An agent-based model for cell collective dynamics

L. NAVORET ¹ R. SUBLET ¹ M. SZOPOS²

¹IRMA, Université de Strasbourg

²MAP5, Université Paris Cité

From Cells to Tissues Lake Como School: Monday, June 10, 2024

Model

There are N cells that evolve in a 2D space Ω . Each cell has a position $\mathbf{X}_k \in \mathbb{R}^2$, a velocity $\mathbf{V}_k \in \mathbb{R}^2$, a polarity $\mathbf{P}_k \in \mathbb{S}^1$, which describes the preferred direction.

▶ Positions:
$$\boldsymbol{X} = (\boldsymbol{X}_k)_k \in \mathbb{R}^{2N}$$

► Velocities:
$$\mathbf{V} = (\mathbf{V}_k)_k \in \mathbb{R}^{2N}$$

▶ Polarities:
$$\mathbf{P} = (\mathbf{P}_k)_k \in (\mathbb{S}^1)^N$$

Model ingredient:

- ▶ Vicsek-type interaction [Vicsek et al. 1995]
- ► Contact forces (hard sphere) [Maury and Venel 2011]
- ► Soft attraction-repulsion forces [Beatrici et al. 2023]

Adapted from a model validated against experimental data [Vecchio et al. 2024].

Equations on X, V and P

Position dynamics

$$\frac{d\mathbf{X}_k}{dt}=\mathbf{V}_k.$$

Velocities dynamics

$$oldsymbol{V} = \mathsf{Proj}_{\mathcal{C}_{oldsymbol{\mathcal{X}}}}(coldsymbol{P} + \gamma oldsymbol{F}(oldsymbol{\mathcal{X}}))$$

- ▶ Hard sphere repulsion: projection onto the set of admissible velocities C_X
- ▶ Soft attraction-repulsion force F of stiffness κ

Polarity dynamics

$$d\boldsymbol{P}_k = \operatorname{Proj}_{\boldsymbol{P}_k^{\perp}} \left(\mu(\overline{\boldsymbol{P}}_k - \boldsymbol{P}_k) dt + \delta \left(\frac{\boldsymbol{V}_k}{\|\boldsymbol{V}_k\|} - \boldsymbol{P}_k \right) dt + \sqrt{2D} (d\boldsymbol{B}_t)_k \right)$$

Equations on X, V and P

Position dynamics

$$\frac{d\mathbf{X}_k}{dt}=\mathbf{V}_k.$$

Velocities dynamics

$$V = \mathsf{Proj}_{\mathcal{C}_{\boldsymbol{X}}}(c\boldsymbol{P} + \gamma \boldsymbol{F}(\boldsymbol{X}))$$

Polarity dynamics

$$d\mathbf{P}_k = \operatorname{Proj}_{\mathbf{P}_k^{\perp}} \left(\mu(\overline{\mathbf{P}}_k - \mathbf{P}_k) dt + \delta \left(\frac{\mathbf{V}_k}{\|\mathbf{V}_k\|} - \mathbf{P}_k \right) dt + \sqrt{2D} (d\mathbf{B}_t)_k \right)$$

- ▶ Alignment to the local averaged polarity \overline{P}_k (Viscek-type interaction)
- ▶ Relaxation to the velocity direction $\frac{V_k}{\|V_k\|}$
- ▶ Gaussian white noise: $(dB_t)_k$
- ▶ Projection to keep the polarity of norm 1

Discretization: let Δt be our time step

The update of X^n is:

$$\boldsymbol{X}_{k}^{n+1} = \boldsymbol{X}_{k}^{n} + \boldsymbol{V}_{k}^{n+1} \Delta t$$

The update of V^n is made by resolving the following optimization problem with an Uzawa algorithm, [Maury and Venel 2011]

$$oldsymbol{V}^{n+1} = \mathop{\mathrm{argmin}}_{oldsymbol{V} \in \mathcal{C}_{X_n}^{\Delta t}} rac{1}{2} \left\| oldsymbol{V} - c oldsymbol{P}^{n+1} - \gamma \mathsf{F}(oldsymbol{X}^n)
ight\|^2$$

The update of \mathbf{P}^n is made by discretization of the angle of $\mathbf{P}_k^{n+1} = (\cos(\theta_k^{n+1}), \sin(\theta_k^{n+1}))$ [Motsch and Navoret 2011]:

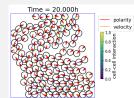
$$\theta_k^{n+1} = \theta_k^n + 2\left(\theta[\boldsymbol{Q}_k^n] - \theta_k^n\right) + \sqrt{2D\Delta t}\,\boldsymbol{\xi}_k^n$$

Influence of the attraction-repulsion force

Default parameters:

$$R_{c} = 9.5 \mu \text{m}$$

 $\kappa = 10^{4} \text{pN } \mu \text{m}^{-1}$
 $\gamma = 10^{-5} \text{pN}^{-1} \text{h}^{-1} \mu \text{m}$

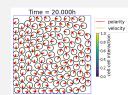


Observation:

- Rotating movement
- Lot of contacts

Strong attraction-repulsion:

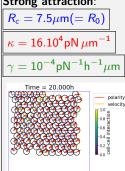
$$R_c = 9.5 \mu \text{m}$$
 $\kappa = 16.10^4 \text{pN } \mu \text{m}^{-1}$
 $\gamma = 10^{-4} \text{pN}^{-1} \text{h}^{-1} \mu \text{m}$



Observation:

- Better rotating movement
- Few contact

Strong attraction:



Observation:

- Movement up-down
- Cells glued together

Thanks for your attention!

- Beatrici, C. et al. (2023). "Comparing individual-based models of collective cell motion in a benchmark flow geometry". In: *Soft Matter* 19.29, pp. 5583–5601.
- Maury, B. and J. Venel (2011). "A discrete contact model for crowd motion". In: *ESAIM Math. Model. Numer. Anal.* 45.1, pp. 145–168.
- Motsch, S. and L. Navoret (2011). "Numerical simulations of a nonconservative hyperbolic system with geometric constraints describing swarming behavior". In: *Multiscale Model. Simul.* 9.3, pp. 1253–1275.
- Vecchio, S. Lo et al. (2024). "Spontaneous rotations in epithelia as an interplay between cell polarity and boundaries". In: Nature Physics.
- Vicsek, T. et al. (1995). "Novel type of phase transition in a system of self-driven particles". In: *Phys. Rev. Lett.* 75.6, p. 1226.