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Introduction

Context: ANR MAPEFLU project in collaboration with
biophysicists (IGBMC, Strasbourg) and biologists (Institut Pasteur).

Figure: Villars et Letort et al., 2023, BiorXiv

Objectif: Design a mathematical and computational model to
study the role of apoptosis (i.e. programmed cell death) on
collective cells dynamics.
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Summary

|. Mathematical model
[I. Numerical discretization

[1l. Numerical experiment
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|. Mathematical model
» Positions and velocity dynamics
» Polarity dynamics
» Well-posedness
» Apoptosis in the model

Numerical discretization

Numerical experiment
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Model

There are N cells that evolve in a 2D space . Each cell has a
position X € R?, a velocity € R?, a polarity P, € S, which
described the preferred direction, and a radius Rk(t) € [0, Rmax]-

> positions: X = (X )x € R2N
> velocities:
5 1\N
» polarities: P = (Px)x € (S*) X
» radii of the cells: R = (Rk)x € [0, Rmax]N P
>

apoptosis states: o = () € {0,1}V
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Model ingredient

The following model includes three ingredients
» Vicsek-type interaction!
> contact forces?

> soft attraction-repulsion forces?

Adapted from a model validated against experimental data*.

1T Vicsek, A. Czirék, E. Ben-Jacob, et al., “Novel type of phase transition
in a system of self-driven particles,” Phys. Rev. Lett., vol. 75, no. 6, p. 1226,
1995.

2B. Maury and J. Venel, “A discrete contact model for crowd motion,”
ESAIM Math. Model. Numer. Anal., vol. 45, no. 1, pp. 145-168, 2011.

3C. Beatrici, C. Kirch, S. Henkes, et al., “Comparing individual-based
models of collective cell motion in a benchmark flow geometry,” Soft Matter,
vol. 19, no. 29, pp. 5583-5601, 2023.

4S. L. Vecchio, O. Pertz, M. Szopos, et al., “Spontaneous rotations in
epithelia as an interplay between cell polarity and boundaries,” Nature Physics,
2024.
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Equations on X, V and P

Positions dynamics

—d)g(t(t) = Vi(t).

Velocities dynamics:
V = Proj¢, (cP +vF(X))

Polarity dynamics:

. — V,
dPy = PrO_ijl (/L(Pk = Pk)dt+ 1) <||Vi|| = Pk) dt + v 2D(C/Bt)k)
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Equation on V: soft attraction-repulsion force

V = Proje, (cP + vF(X))

F = (Fi)k=1,.. n is described by:

FX)= > VxW(X—Xl)
Dol X=Xil| <R

int

We consider the following interaction potential [3]:

2 3
r r
W(r)=—x|—=—
0=-+(7"3;)
~y is the inverse friction coefficient
k is the rigidity constant
R2" is the radius of cells polarity interaction

int
D, is the diameter of cells comfort zone.
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Equation on V: contact interactions

V = Projcx(cP + vF(X))

Set of admissible velocities :
Cx ={VeRN|Vi<j, D;j(X)=0 = VD,;;j(X)-V >0,
Vi, Dp(Xij) =0 = VDu(X;)- V; > 0}.
» D;;(X) = [|X; — Xj|| — Ri — R; the distance between the i-th
and j-th cells.

» Dy(Xi) =infycan |ly — Xi|| — R; the distance between the
i-th cell and the boundary.

02

Dy(X;) PIWV/ Dy(X)

Y
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Equation on P: Vicsek-like model

_ V
dPy = Projp. o (u(Pk — Py)dt+6 ( VkH — Pk) dt + v/2D( )k)
k

> Alignment of the polarity (Vicsek-type interactions [1]):

P.
5 Zillyex|<epe P

P, =

‘ELHXFXngRm P;
Vi
| Vil|

> Relaxation to the velocity direction: |
» Gaussian white random noise:
» Projection on Pkl so that the polarity remains of norm 1
RP® is the radius of polarity
w and ¢ are relaxation parameters
D is the angular diffusion
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Well-posedness: reformulation of the systems

» Polar formula for the polarity: Py = (cos(6y),sin(6x))”
» The equation on P becomes:

e DR E T

» denoting 0, and v, the angles of the vectors P; and V, /|| V||

do . :
d—tk = psin(0x — ) + 0sin(1hx — Og).
d :
» The system becomes: E(X’ 0) = Proje, «rv U(X, 0)
c(cos®;,sin0;)T + ~F;(X), if1<j<N,

U(X,0); = { i

1% sin(Hj,N - 9_,',[\/) + 6 sin("z/i’j,,\, — QJ;N), if N+ 1 <J < 2N
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Differential inclusion

d )
a(xa 0) = PrOJCXXRN U(Xv 0)

» The polar cone of Cx x RV is Nx x {0} and

PrOijXRN = PI’OJNXX{O} =Id

> We obtain: % (X,0) = U(X,0) — Proju; « oy U(X, 0)
» Differential inclusion:

d(X,0)
dt

+ Nx x {0} > U(X,0)
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Well-posedness result

Proposition

Let @ = {X € R?N | Vi < j, D;j(X) > 0} be the set of admissible
configurations. We suppose that U is Lipschitz and bounded.
Then, for any initial data (Xp,00) € Q x RN and any time T > 0,
there exists a unique absolutely continuous solutionon the interval
(0, T) to the system

d(X,0)

T‘i‘Nx X {0} =) U(X,Q),

(X,0)(0) = (Xo, bo)-

Generalization of results from J. Venel's thesis®

5. Venel, "Modélisation mathématique et numérique de mouvements de

foule,” .
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Apoptosis

Apoptosis occurs at time T, the apoptotic state becomes oy = 1,
the cell radius decreases

Ri(t) = (Ro + 17, +oo( Bl T2 — t])+

Rk Mum
tk(um)

Ry=175

5 Rk (t)

t (h)
012345567

a =
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Modification of the interactions

» additional polarity relaxation towards the apoptotic cells:

dP = Projpklo<u( — P)dt+6 (”5 H Pk) dt +|v(M, — P dt |+ \/2D(dBt)k)

. - (X=X
with M, = Z fo% 105 = X0l

a6 =Xl <Ri

int

> apoptotic cells exert stronger attraction-repulsion force:

FX)= " > VxWil X~ Xll)

j’”Xk_ ||< |nt

with Wi(r) = —| (1 — o) k + ajriapop) (; - 3rD3c>
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Mathematical model

[. Numerical discretization
» Discretization of the position and velocity
» Discretization of the polarity
» Apoptosis part in the discretization

Numerical experiment
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Discretization

Let At > 0 be the time step and denote by (X}'), (V/') and (P})
the approximate positions, velocities and polarities at time

t" = nAt, n € N, respectively.

The update of X" is:

X[ =X+ VA
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Following the method proposed in®:
V7 = Projess (cP™! 4 7 F(X™)),
i ={V e ROV |Vi<j, Dij(X")+ At VD; j(X")- V > 0,
Vi, Db(X,-”) + At VDb(X,-n) -V > 0}

Difficulty: deal with the projection

cgi={veR)"|BV-D<O0},

o D N(N—12+N = B
D = [DJ eR 2 , B= [Bb] EMN(N2—1)+N72N,

®B. Maury and J. Venel, “A discrete contact model for crowd motion,”
ESAIM Math. Model. Numer. Anal., vol. 45, no. 1, pp. 145-168, 2011.
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Optimization: Uzawa

vrtl — argmmf H V —cP"t1 — fyF(X")HZ,
Vecm

The associated Lagrangian functional:
n+1 m |2 o3 n
L(V,A) va cP™ —AF(X")|*+ A+ (BV - D),
Constructing the sequences (VU)); and (A1)); as follows:
1. vO=v" A0 =g,

2. VU = min £(V,N)=cP™ 4+ 4F(X") — BTAW,
VeR2N

3. AUHD = max (o, A0 4 p (évU) _ 5)) :

p > 0 is the the gradient-descent step of the method.
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Semi-implicit scheme’ that ensures ||Pg|| = 1:

PPt = P{ 4 Proj oy, | nAE (Pi—P) +aat sz"H - Py
k

+V2DAt¢])

> PP = (Pr 4 PITY) )2

» £/ random number following a standard Normal distribution

7S. Motsch and L. Navoret, “Numerical simulations of a nonconservative
hyperbolic system with geometric constraints describing swarming behavior,”
Multiscale Model. Simul., vol. 9, no. 3, pp. 1253-1275, 2011.
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Explicit implementation

Polar formulation: 6} € [0, 2), such that
P = (cos (07),sin (7))". The semi-implicit scheme become:

o7t =0z +2(Qf - 6;) + V2DAT

n_ pn At D" n |74 n
- Qk—Pk+2<M (Pk_Pk)+5<’Vn‘ P>>

> @,’Z is the polar angle of the vector Q7
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Apoptosis part in the discretization

> Decreasing radius: R = [Ro + 17, 1oo[(nAL)B[ T, — nAt]]Jr
» Center polarity on the dying cell:

At D" n v/ n n n
Q= P,f+7 (M (Pk - Pk> + 6 (H V:"H — Pk>>+y(Mk—Pk)dr

> Stronger attraction-repulsion force: change x to
((1 — aj) k + jrapop) in the potential.
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Mathematical model
Numerical discretization

[1l. Numerical experiment
» Influence of the shape of the domain
» Influence of the smooth attraction-repulsion
» Apoptosis
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Parameters
Taken from [4]8, , calibrated numerically

Cells radius Ro 7.5 pm
Cells comfort radius R 9.5 um
Cells attraction-repulsion interaction radius (il 19 um
Cells polarity interaction radius RS 60 p#m
Cell speed c 216  pumht
Angular diffusion D 0.96 rad>h™*
Relaxation parameter: polarity to mean polarity 1 6.2 radh™?
Relaxation parameter: polarity to velocity 1) 6.2 radh™!
Rigidity constant K 10* pN pm~1
Inverse friction coefficient v 107  pN~h~'um
Apoptosis on P v 10 radh™?
Apoptosis spring force (on V) Kapop  5.10*  pNpm™?!
Speed of decreasing for radius 11.25 pmh™?!

8S. L. Vecchio, O. Pertz, M. Szopos, et al., “Spontaneous rotations in
epithelia as an interplay between cell polarity and boundaries,”
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Indicators of the emergence of collective movement

» The normalized global mean speed:

» The rotation order parameter:

(brot k(t 7

Mz

k:

where e, = (Xx — X)* /|| Xk — Xc|| is the unit tangential
vector with respect to the domain center X..
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Influence of the shape of the domain

Compare cells collective dynamics in a square and in a disk
» Dense regime (density larger than 0.8)
» Domains with same area
» Final time: T =20h, time step At = 1072h
» Indicators averaged over the last T /8 = 2.5h
>

20 different numerical simulations for each density.
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mean speed vV Rotation order [
10) T Mean 10 — mean
08 08
06 06
04 0.4
0.2 0.2
010,600 0.604 0.608 0613 0.617 0822 0.626 0.631 0635 0,639 0,600 0.604 0.808 0.613 0,817 0.622 0,626 0.831 0.635 0.839
density density

Square domain of length 200 um: jamming effect at higher density, rotational
movement elsewhere.

Normalized mean speed v Rotation order parameter ¢ror
10| — mean 10 — mean
4 é——!L\:P__‘}—é—S—FH___?
08 08
06 06
0.4 0.4
02 02

096782 0.786 0.791 0.795 0.800 0.604 0.608 0.813 0.617 0.622 000,782 0.786 0.791 0.795 0.600 0.604 0.608 0.613 0.617 0.622
density density

Disk domain of radius 200/+/7 pm: rotational movement independent of the
density.
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With an obstacle

G0 § B % B 10

Helps the movement but still jamming effect in the largest densites.

7))

Normalized mean speed ¥

Rotation order parameter ¢,

— mean

00,795 0.603 0.608 0.612 0.616 0,621 0.625 0,630 0.834 0.639
density

Normalized mean speed ¥

10| — mean l

0 0795 0.603 0.808 0.612 0.616 0,821 0.625 0.630 0.634 0639
density

Rotation order parameter @y

1o — mean
—e—= —eo—< e

08

06/

04

02

00781 0.785 0.790 0.794 0.799 0.803 0.608 0.812 0.816 0.821
density

*0'0.7810.785 0.790 0.794 0.799 0.803 0.608 0.812 0.816 0.621
density

Rotational movement.
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Numerical discretization
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Numerical experiment
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Influence of the attraction-repulsion force

Default parameters:
R. = 9.5um

k= 10*pN pm~?!

v =10"°pN"*h~'um

Time = 20.000h
D

—— polarity
velocity
10

Observation:

» Rotating
movement

» Lot of contacts

05.24.2024

Strong attraction-repulsion:
R. = 9.5um
= 16.10*pN Mm71 ‘

=
\

10~ *pN"*h™ um ‘

Time = 20.000h

— polarity
velocity

Observation:

» Better rotating
movement

» Few contact

Strong attraction:
’ R = 7.5um(= Ro) ‘

K

16.10*pN ,um71 ‘

10~ *pN"*h™um ‘

Time = 20.000h
D ¢

— polarity
velocity

Observation:

» Movement
up-down

» Cells glued

together
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Apoptosis

Numerical discretization
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Apoptosis starts at T, = 5h for 2 randomly chosen cells. It takes 40min

for a cell to die. Apoptotic cells are in green.

Default parameters:
R. =9.5um

k= 10*pN gm~*

v =10"°pN"*h~!um

—— polarity
velocity

cell-cell interaction

» Change in the direction of
the neighbour

» Some change in the
global movement

05.24.2024

Strong attraction-repulsion:
R. = 9.5um

k= 16.10*pN pm !

v =10"*pN"*h~tum

—— polarity
velocity

—
cell-cell interaction

» Change of direction less
important

» Less change in the global
movement

An agent-based model for cell collective dynamics

Numerical experiment
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Conclusion & perspectives

» Construction of a mathematical and computational model for
cells collective dynamics

» Include the phenomena of apoptosis

» Observation of different behaviors depending of the shape of
the domain and the intensity of the attraction-repulsion force

» Macroscopic model

v

Calibration of last parameters

» Design a fluidity indicator
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